PRINCIPLES OF ANALYSIS LECTURE 7 - COUNTABILITY AND UNCOUNTABILITY

PAUL L. BAILEY

1. Countability

Let $n \in \mathbb{N}$ and set $\mathbb{N}_n = \{0, 1, \dots, n-1\}$. By convention, we write that $|\mathbb{N}_n| = n$.

Let A be a set. We say that A is *finite* if |A| = n for some $n \in \mathbb{N}$, that is, if there exists a bijective function $A \to \mathbb{N}_n$. We say that A is *infinite* if it is not finite.

We say that A is *countable* if $|A| \leq |\mathbb{N}|$, that is, if there exists an injective function $A \to \mathbb{N}$, or equivalently, if there exists a surjective function $\mathbb{N} \to A$. We say that A is *countably infinite* if it is both countable and infinite. A set is called *uncountable* if it is not countable.

Proposition 1. Every infinite set has a countable subset.

Proof. Let A be an infinite set. Suppose, by way of contradiction, that there does not exist an injective function from \mathbb{N} to A.

For every $f : \mathbb{N} \to A$, define $F_f = \{n \in \mathbb{N} \mid f(n) = f(m) \text{ for some } m < n\}$. Since f is not injective, F_f is nonempty. Set $n_f = \min(F_f)$.

Define the set $M \subset \mathbb{N}$ by

$$M = \{ n \in \mathbb{N} \mid \exists f : \mathbb{N} \to A \text{ such that } n = n_f. \}$$

Let $m = \max(M)$; then there exists $g : \mathbb{N} \to A$ such that $m = n_g$. Thus the function $g \upharpoonright_{\mathbb{N}_m} : \mathbb{N}_m \to A$ is injective. Since A is infinite, $g \upharpoonright_{\mathbb{N}_m}$ is not surjective, so there exists $a \in A$ such that $g(n) \neq a$ for every $n \in \mathbb{N}_m$. Define a function

$$h: \mathbb{N} \to A$$
 by $h(n) = \begin{cases} g(n) & \text{if } n < m; \\ a & \text{if } n \ge m. \end{cases}$

Now $n_h = m + 1$, so $m + 1 \in M$, contradicting $m = \max(M)$.

The Hebrew *aleph* is written \aleph . Cantor define \aleph_0 to be the cardinality of the natural numbers: $\aleph_0 = |\mathbb{N}|$. As a corollary of the previous proposition, \aleph_0 is the

smallest of the "transfinite" cardinals.

Corollary 1. Let A be an infinite set. Then $|\mathbb{N}| \leq |A|$.

Proof. Let B be a countable subset of A. Then the inclusion function

$$\operatorname{inc}: B \to A$$
 given by $\operatorname{inc}(b) = b$

is injective, so $|\mathbb{N}| = |B| \le |A|$.

Date: September 15, 2003.

Proposition 2. Every subset of a countable set is countable.

Proof. Let A be a countable set and let $B \subset A$. Since A is countable, there exists an injective function $f : A \to \mathbb{N}$. Then $f \upharpoonright_B : B \to \mathbb{N}$ is also injective, so B is countable.

Proposition 3. Let A and B be countable sets. Then $A \cup B$ is countable.

Proof. Since A and B are countable, there exist surjective functions $g : \mathbb{N} \to A$ and $h : \mathbb{N} \to B$. Define a function

$$f: \mathbb{N} \to A \cup B$$
 by $f(n) = \begin{cases} g(\frac{n}{2}) & \text{if } n \text{ is even;} \\ h(\frac{n-1}{2}) & \text{if } n \text{ is odd.} \end{cases}$

Then f is surjective, so $A \cup B$ is countable.

Proposition 4. Let A and B be countable sets. Then $A \times B$ is countable.

Proof. Since A and B are countable, there exist injective functions $g: A \to \mathbb{N}$ and $h: B \to \mathbb{N}$. Define a function

$$f: A \times B \to \mathbb{N}$$
 by $f(a, b) = 2^{g(a)} \cdot 3^{h(b)}$

To see that f is injective, suppose that $f(a_1, b_1) = f(a_2, b_2)$. Then $2^{g(a_1)}3^{h(b_1)} = 2^{g(a_2)}3^{h(b_2)}$. Thus $2^{g(a_1)-g(a_2)} = 3^{h(b_2)-h(b_1)}$, where without loss of generality $g(a_1) \ge g(a_2)$. If $g(a_1) > g(a_2)$, then 2 divides the left side and not the right; this is impossible, so $g(a_1) = g(a_2)$, and since g is injective, we must have $a_1 = a_2$. Similarly, $b_1 = b_2$.

Proposition 5. The set \mathbb{Z} of integers is a countable set.

Proof. Define a function

$$f: \mathbb{Z} \to \mathbb{N} \quad \text{by} \quad f(n) = \begin{cases} 1 & \text{if } n = 0; \\ 2n & \text{if } n > 0; \\ 2n + 1 & \text{if } n < 0. \end{cases}$$

Then f is injective, so \mathbb{Z} is countable.

Proposition 6. The set \mathbb{Q} of rational numbers is a countable set.

Proof. Let \mathbb{Z}^+ denote the positive integers, $\mathbb{Z}^+ = \{1, 2, 3, ...\}$. This is a subset of \mathbb{Z} , and is therefore countable. By Proposition 4, it suffices to find an injective function $\mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}^+$. Every rational number has a unique expression $\frac{p}{q}$ as a ratio of integers, where gcd(p,q) = 1 and q > 0. This induces a function $\mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}^+$ given by $\frac{p}{q} \mapsto (p,q)$. This function is bijective; therefore \mathbb{Q} is countable. \Box

Let A and B be sets. We define the sum, product, and exponentiation of cardinal numbers to match that of finite numbers.

Define

$$|A| + |B| = |(A \times \{0\}) \cup (B \times \{1\})|.$$

Note that even if $A \cap B$ is nonempty, $A \times \{0\}$ and $B \times \{1\}$ are disjoint sets. So if A is any set with m elements and B is any set with n elements, then $(A \times \{0\}) \cup (B \times \{1\})$ is a set with m + n elements.

Define

$$|A| \cdot |B| = |A \times B|.$$

Again, if A and B are finite with m and n elements respectively, then $A \times B$ has mn elements.

Define

$$|A|^{|B|} = |\mathcal{F}(B,A)|$$

where $\mathfrak{F}(B, A)$ denotes the set of all functions from B to A. This again agrees with the finite case.

We have seen that for any set X, there does not exist a surjective function from X to its power set $\mathcal{P}(X)$. Thus $|X| < |\mathcal{P}(X)|$. Actually, the next proposition shows that $|\mathcal{P}(X)| = 2^{|X|}$.

Proposition 7. Let X be any set and let $T = \{0, 1\}$. Let $\mathcal{P}(X)$ denote the power set of X and let $\mathcal{F}(X,T)$ denote the set of all functions from X to T. Then $|\mathcal{P}(X)| = |\mathcal{F}(X,T)|$.

Proof. Define a function

$$\Phi: \mathfrak{F}(X,T) \to \mathfrak{P}(X) \quad \text{by} \quad \Phi(f) = f^{-1}(1).$$

It suffices to show that Φ is bijective.

To see that Φ is injective, suppose that $\Phi(f_1) = \Phi(f_2)$, where $f_1: X \to T$ and $f_2: X \to T$. Then $f_1(x) = 1$ if and only if $f_2(x) = 1$. For $x \in X$, $f_i(x)$ is either 1 or 0, so if it is not 1, it is zero. Therefore $f_1(x) = 0$ if and only if $f_2(x) = 0$. So $f_1(x) = f_2(x)$ for every $x \in X$, that is, $f_1 = f_2$.

To see that Φ is surjective, let $A \in \mathcal{P}(X)$. Define a function

$$f: X \to T \quad \text{by} \quad f(x) = \begin{cases} 0 & \text{if } x \notin A; \\ 1 & \text{if } x \in A. \end{cases}$$

Then $A = f^{-1}(1)$, so $\Phi(f) = A$.

3. INTERVALS

We define *intervals* of real numbers as follows:

 $\begin{array}{ll} (\mathbf{a}) & (a,b) = \{x \in \mathbb{R} \mid a < x < b\}; \\ (\mathbf{b}) & (a,b] = \{x \in \mathbb{R} \mid a < x \le b\}; \\ (\mathbf{c}) & [a,b) = \{x \in \mathbb{R} \mid a \le x < b\}; \\ (\mathbf{d}) & [a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}; \\ (\mathbf{e}) & (a,\infty) = \{x \in \mathbb{R} \mid a < x\}; \\ (\mathbf{f}) & [a,\infty) = \{x \in \mathbb{R} \mid a \le x\}; \\ (\mathbf{g}) & (-\infty,b) = \{x \in \mathbb{R} \mid x < b\}; \\ (\mathbf{h}) & (-\infty,b] = \{x \in \mathbb{R} \mid x \le b\}; \end{array}$

(i) $(-\infty,\infty) = \mathbb{R}$.

Intervals of types (a), (e), (g), and (i) are called *open intervals*, and intervals of types (d), (f), (h, and (i) are called *closed intervals*.

Proposition 8. Any two intervals have the same cardinality.

Proof. We show part of this and leave the remaining details to the reader.

First note that the function $x \mapsto \frac{x-a}{b-a}$ maps (a, b) bijectively onto (0, 1). So all intervals of type (a) have the same cardinality.

Next consider the function $x \mapsto e^x$, which produces a bijective correspondence between \mathbb{R} and $(0, \infty)$.

Finally consider the function $\arctan : \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$, which is also bijective. This demonstrates how all of the open intervals are equivalent. Let A be a set. A sequence in A is a function $a : \mathbb{Z}^+ \to A$. We write a_i to mean a(i), and we write $\{a_i\}_{i=1}^{\infty}$, or simply $\{a_i\}$, to denote the function a.

Let β be an integer such that $\beta \geq 2$, and let $\mathbb{N}_{\beta} = \{0, 1, \dots, \beta - 1\}$. Let O = (0, 1) be the open unit interval in the real line. We are interested in relating the set of sequences in \mathbb{N}_{β} , which is denoted by $\mathcal{F}(\mathbb{Z}^+, \mathbb{N}_{\beta})$, to the set O.

Define a function

$$\mu: \mathbb{Z} \to \mathbb{N}_{\beta}$$
 by $\mu(n) = r$,

where $n = \beta q + r$ with $q, r \in \mathbb{Z}$ and $0 \le r < \beta$. Define a function

$$\zeta : \mathbb{R} \to \mathbb{Z}$$
 by $\zeta(x) = \max\{n \in \mathbb{N} \mid n \le x\}.$

For each $k \in \mathbb{Z}^+$, define a function

$$\delta_{\beta,k} : \mathbb{R} \to \mathbb{N}_{\beta}$$
 by $\delta_{\beta,k}(x) = \mu(\zeta(\beta^k x)).$

This induces a function

$$\delta_{\beta}: O \to \mathfrak{F}(\mathbb{Z}^+, \mathbb{N}_{\beta}) \quad \text{by} \quad \delta_{\beta}(x) = \{\delta_{\beta,k}(x)\}_{k=1}^{\infty}.$$

Then δ_{β} is an injective function, and we call $\delta_{\beta}(x)$ the base β expansion of x. Construct a partial inverse to δ_{β} as follows.

Let $\{a_i\}_{i=1}^{\infty}$ be a sequence in \mathbb{N}_{β} and set $B = \{\sum_{i=1}^{k} \frac{a_i}{\beta^i} \mid k \in \mathbb{N}\}$. Then $B \subset O$, and in particular, B is a bounded set of real numbers. Set $b = \sup(B)$. For most sequences, $\delta_{\beta}(b) = \{a_i\}_{i=1}^{\infty}$.

Call a sequence $\{a_i\}_{i=1}^{\infty}$ in \mathbb{N}_{β} a *duplicator* if there exists $N \in \mathbb{N}$ such that $a_i = \beta - 1$ for all i > N. These are the only sequences which are not in the image of the function δ_{β} . If $S = \mathcal{F}(\mathbb{Z}^+, \mathbb{N}_{\beta}) \setminus \{ \text{ duplicators } \}$, then $\delta_{\beta} : O \to S$ is bijective.

5. Uncountability

Proposition 9. The set \mathbb{R} of real numbers is an uncountable set.

Proof. Since $O = (0, 1) \subset \mathbb{R}$, it suffices to show that O is uncountable.

Let $\beta = 10$ so that we consider base 10 expansions of the elements in O, and let μ , ζ , and δ_{β} be as in the previous section.

Let $f: \mathbb{N} \to O$ be any function; we will show that f is not surjective. Set

$$a_i = \begin{cases} 3 & \text{if} \quad \beta_i(f(i)) \neq 3; \\ 6 & \text{if} \quad \beta_i(f(i)) = 3. \end{cases}$$

Set $B = \{\sum_{i=1}^{k} \frac{a_i}{10^i} \mid k \in \mathbb{N}\}$. Then $B \subset O$, and in particular, B is a bounded set of real numbers. Set $b = \sup(B)$. Then b is not in the image of f. \Box

We can be even more precise than this.

Proposition 10. $|\mathbb{R}| = 2^{\aleph_0}$.

Proof. Again let O = (0, 1). Since $|\mathbb{R}| = |O|$, it suffices to prove that the cardinality of O equals that of $\mathcal{F}(\mathbb{Z}^+, \mathbb{N}_2)$.

First construct a function

$$f: \mathcal{F}(\mathbb{Z}^+, \mathbb{N}_2) \to O$$
 by $f(a_i) = \sup\left\{\sum_{i=1}^k \frac{a_i}{10^i} \mid k \in \mathbb{Z}^+\right\}.$

This function is injective.

Next consider that $\delta_2 : O \to \mathcal{F}(\mathbb{Z}^+, \mathbb{N}_2)$ is injective.

By the Schoeder-Bernstein theorem, there exists a bijective function $O \rightarrow \mathcal{F}(\mathbb{Z}^+, \mathbb{N}_2)$.

Department of Mathematics and CSCI, Southern Arkansas University $E\text{-}mail\ address:\ plbailey@saumag.edu$